Chest Imaging in CF

Harm Tiddens MD, PhD Paediatric Pulmonologist Department of Pediatric Pulmonology Department of Radiology ErasmusMC-Sophia Children' s Hospital

Princess Margaret Hospital, University of Western Australia Ningxia University, Yinchuan China

Monitoring of CF lung disease using imaging

Erasmus MC 2 afms

Why?: Spirometry more sensitive to detect localized structural abnormalities

Erasmus MC Zafma

Tiddens Ped Pulm 2002; De Jong ERJ 2004; De Jong Thorax 2006, Owens Thorax 2011, Thia, Abstract WS7.5

Why inspiratory and expiratory scan?

Erasmus MC Zafung

Lung volume is key determinant for diagnosis of bronchiectasis

Airway/Artery ratio >1

Airway/Artery ratio <1

Erasmus MC 2 almo Expiration at residual volume (RV) level Maximal contrast between normal and abnormal lung

Erasmus MC apris

Salamon et al, *Pediatr Pulmonol* 2017

Spirometer guided chest CT and MRI: Train and coach!

Erasmus MC 2 almo

Salamon et al, Pediatr Pulmonol 2017

Spirometer guided chest CT and MRI: Train and coach!

请勿大声喧峰

Erasmus MC 2 april

Standardization of chest CT: SCIFI-CF (EU), Australia, USA

Monitoring CF lung disease using chest CT: Radiation risk in perspective

- Fatal cancer due to biennial chest CT scans
- Fatal cancer due to background radiation increase
- Fatal cancer not due to CT scans or background radiation increase
- Other (e.g. cardiovascular diseases; accidents; infections etc)

Other risks in life

- Death by motor vehicle accident 1%
- Death medical error in hospital 0.1%
- Severe reaction to contrast agent 0.18%

Kuo, AJRCCM 2014; Guillerman, Thorax 2014; De Jong, AJRCCM 2005

Risk relation to chest CT monitoring is low

- 1000 exposed children (dots) in total (50% male, 50% female)
- Two to four scans in total around the age of 5
- Maximum total CTDI_{vol 32 cm} = 3 mGy
- Life long fatal cancer risk: 200 out of 1000 persons
- Fatal cancer risk of 0.03%, i.e. 0.3 child in 1000 children exposed *

Erasmus MC Zafung

11

* CT-Expo, Germany and BEIR VII

Monitoring of CF lung disease using imaging

More sensitive Risk is low Its doable Improves quality Lets do it

Erasmus MC 2 almo

Quantification of CF lung CTs

Brody-II

CF-CT

SALD

Lung IDLobe:	Score								
CT abnormality	0	1	2	3					
1. Bronchiectasis									
Central lung (extent of lung)	Absent	<33%	33%-67%	>67%					
Peripheral lung (extent of lung)	Absent	<33%	33%-67%	>67%					
Size of the largest	Absent	B<2V	B=2-3V	B>3V					
Size of the average	Absent	B<2V	B=2-3V	B>3V					
2. Airway wall thickening									
Severity	Absent	33%-50% V	50%-100% V	>100% V					
Central lung (extent of lung)	Absent	<33%	33%-67%	>67%					
Peripheral lung (extent of lung)	Absent	<33%	33%-67%	>67%					
3. Mucous plugging									
Large airways (extent)	Absent	<33%	33%-67%	>67%					
Small airways (extent)	Absent	<33%	33%-67%	>67%					
4. Parenchyma									
Atelectasis and consolidation (extent)	Absent	<33%	33%-67%	>67%					
Bulla and cysts (extent)	Absent	<33%	33%-67%	>67%					
Ground glass opacification (extent)	Absent	<33%	33%-67%	>67%					
5. Air trapping									
Extent	Absent	<33%	33%-67%	>67%					
Pattern	Absent	Subsegmental	Segmental	Lobar					

Rotterdam AA-method

PRAGMA-CF

1."Normal" lung
 2.Bronchiectasis
 3.Mucous plugging
 4.Airway Wall Thickening
 5.Atelectasis

Sweat chloride predicts school age CF-CT score

- N=59, ErasmusMC CF-CT cohort routine biennial CTs
- Median age follow up 14 (6-18) years
- Linear regression: adjusted for age diagnosis and follow up
- Stratification for age of follow up in tertiles (6.2-11.1; 11.1-15.5; 15.5-18.2)

Erasmus MC

Caudri et al, Ped Pulm 2017

Computation of volume: SALD annotation system

- 1. Infection/inflammation (red)
- 2. Air trapping/hypoperfusion (blue)
- 3. Normal/hyperperfusion (green)
- 4. Bulla/Cysts (orange)

Loeve, AJRCCM 2012

Spectrum abnormalities, 411 end stage lung disease CTs

Loeve et al, AJRCCM 2012

Loeve et al, AJRCCM 2012

PRAGMA-CF (Inspiratory CT)

<u>Outcome measure:</u> Proportion lung affected with disease %Disease = %BE + %Mucous + %Bronchial Wall Thickening

Erasmus MC zafma

Rosenow et al, AJRCCM 2015

PRAGMA-CF (Expiratory CT)

Outcome measure: Proportion of lung with trapped air (%TrappedAir)

Erasmus MC 2 april

Rosenow et al, AJRCCM 2015

Longitudinal changes PRAGMA-CF %Dis Erasmus-MC CF cohort

- N=61, ErasmusMC CF-CT cohort
- 122 routine biennial CTs (first scan between 3-5 years and last CT)
- Median Preschool CT age 4.07, follow up 6.6 (4-9) years
- Multivariable linear regression analysis

Rotterdam Airway-Artery Method (RAAM)

Volume controlled CT scan

Reconstruction

Airway Artery dimensions

Er:

Segmentation

Erasmus MC Zafung

Kuo et al, Pediatric Pulmonology 2017 Ellipse tool

Airway in cross section

RAAM, control + CF \geq 6 yrs:

Aim:

To assess airway and artery dimensions on inspiratory and expiratory CTs of children with CF and a control group

12 controls (normal CT)

- Insp: 1516 AA pairs
- Exp: 700 AA pairs

12 CF patients

- Insp: 3528 AA pairs
- Exp: 1017 AA pairs

Erasmus MC

Kuo et al, Pediatric Pulmonology 2017

Bronchiectasis: More severe by generation

Early CF lung disease

Erasmus MC Cafung

CT bronchiectasis: can be counted and it counts!

- Can be counted: Scoring; Pragma-CF; Airway/Artery ratio Rosenow, AJRCCM 2014; Kuo, JCF 2016; Kuo, Ped Pulm 2017; Kuo, European Radiology 2017
- Starts early in life: Long J Pediatr 2004; de Jong AJRCCM 2005; Stick Pediatrics 2009; Wainwright JAMA 2011; Mott Thorax 2012; Kuo European Radiology 2017
- Progression throughout life: De Jong Thorax 2006, Mott Thorax 2012, Terester J 2013
- Important component end stage lung disease; Loeve The ax 10.9, AJRCCM 2012
- Increased inflammatory markers in abnormal region Davis AJRCCM 2007; Amin Radiology 2012; Sly, NEJM 2013
- More sensitive endpoint than FEV₁ to detect progression progression progression progression progression (Progression Progression Progresion Progression Progression Progression Progressi Progressi
- ✓ Predictor for exacerbations: Brody AJPSCM 2005; Loeve Th vax 2009; Tepper ERJ 2013
- Negative impact on quality of I
- Correlation to mortality; Correlation to mortality; Correlation
- ✓ PRAGMA-CF %Disease pre lictor of later bronchiectasis, lower BMI
- ✓ CT but not CXR acts upon clinical decision making; Bortoluzzi submitted
- Prevention, slowing down progression?: Azithro, Ivacaftor, PTC, Hypertonic saline?

Erasmus MC

CT Trapped air: can be counted and it counts!

- ✓ Can be counted: Loeve Radiology 2012; Mott Thorax 2012; Kuo Eur Radiolo gy2017
- Present in 45-60% of infants and children: Stick. J Pediatrics 2009, Wainwright, JAMA 2011; Mott Thorax 2012
- Progression throughout life: Mott Thorax 2012, Loeve Radiology 2012
- Important component of end stage lung disease: Loeve The Page AJRCCM 2012; Boon AJRCCM 2016
- 1/3 of trapped air in children 6 years is irreversible for Thorax 2012; Loeve thesis 2012;
- 1/3 of trapped air in Arest-CF children 0-6 years is irreversible: Mok to be submitted
- ✓ Negative impact on CFQ children and collescents; Tepper ERJ 2013
- Is not correlated to reduced survival on waiting list: Loeve, AJRCC
- Responsiveness to therapy; Robinson chest 2005, Altes 2011 NACFC, Nasi

ed Pu

Further validation studies Chest CT in CF in the last year

- Chandler et al, Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. Eur Respir
 J. 2018 Sep 6.
- de Winter-de Groot et al, Stratifying infants with cystic fibrosis for disease severity using intestinal organoid swelling as a biomarker of CFTR function. Eur Respir J. 2018
- Newbegin et al, Clinical utility of surveillance computed tomography scans in infants with cystic fibrosis. Pediatr Pulmonol. 2018
- Sasihuseyinoglu et al, Evaluation of high resolution computed tomography findings of cystic fibrosis. Korean J Intern Med. 2018
- Chassagnon et al, An automated computed tomography score for the cystic fibrosis lung. Eur Radiol. 2018 Jun 4.
- Rybacka et al, Congruence Between Pulmonary Function and Computed Tomography Imaging Assessment of Cystic Fibrosis Severity. Adv Exp Med Biol. 2018
- Caudri et al, The association between Staphylococcus aureus and subsequent bronchiectasis in children with cystic fibrosis. J Cyst Fibros. 2018
- Muller et al, Evaluation of surrogate measures of pulmonary function derived from electrical impedance tomography data in children with cystic fibrosis. Physiol Meas. 2018
- Kuo et al, Quantitative assessment of **airway dimensions** in young children with cystic fibrosis lung disease using chest computed tomography. Pediatr Pulmonol. 2017
- Gauthier et al, **Early follow-up** of lung disease in infants with cystic fibrosis using the raised volume rapid thoracic compression technique and computed tomography during quiet breathing. Pediatr Pulmonol. 2017
- Rosenow et al, **Air trapping** in early cystic fibrosis lung disease-Does CT tell the full story? Pediatr Pulmonol. 2017

Erasmus MC Zalmo

Different specialty, different priority

Erasmus MC Zafung

Monitoring of CF lung disease using imaging

Its doable Analysis methods are available Improves quality Well validated Lets do it Can be automated Get your radiologists on board!

Erasmus MC

Dynamic MRI: Mild and advanced disease

Erasmus MC Zafung

Monitoring CF lung disease: VIPS-MRI

Standardization across vendors and centres is a major challenge

Erasmus MC april

Tiddens, Stick, Wild, Ciet, Parker, Koch, Vogel-Claussen, Pediatric Pulmonology 2015

Monitoring of CF lung disease using imaging

Its doable Analysis methods are available Improves quality Well validated Lets do it Can be automated Get your radiologists on board! Its doable Standardization? VIPS MRI

> Erasmus MC Carmo

CF chest CT and image analysis: The future is now

Courtesy: Merlijn Bonte, ErasmusMC LungAnalysis

Erasmus MC Zalmo

ErasmusMC Lung Imaging Group 'Count what Counts'

Mariette Kemner (Head)

Pediatric S: Mast Wieyin Jennife Bernad Clara Hama Sergei Jorien va Bad Els van Phi

Marl

elstijn marco ocnnater

Bas Pullens

s Pro

ans (n=4)

asmus MC

CF and bronchiectasis – from visual scoring to new imaging analysis systems

Image analysis system	Unity	Standardization Training/sets/SOP	Disease severity		Can be automated	Validation Status 1-5
			Early	Advanced		
Brody-II	Score	-	-	+	-	3
CF-CT	% Max score	+	-	+	-	5
SALD	% Lung volume	+	-	+	+	2
PRAGMA-CF %Dis	% Lung volume (Insp)	+	+	+	+	5
PRAGMA-CF TA	% Lung volume (exp)	+	+	+	+	4
AA-Ratio	% AA > 1.1	+	+	+	+	3
Airway tapering	% Airways abnormal	+	?	+	+	2
Density analysis	% lung HU Mode+300	+	?	+	+	2

- Standardization needed of chest CT protocol
- In school age standardization needed of inspiratory and expiratory lung volume chest

Erasmus MC

Is pre-school PRAGMA-CF %Disease a predictor of later bronchiectasis?

- Erasmus MC Sophia CF cohort
- Availability of 2 routine biennial CT scans
 - Baseline CT scan: CT-scan taken at age 2-6 yrs
 - School age follow-up CT scan: Last available scan
- De-identified CT-scans annotated in random order PRAGMA-CF
- Baseline %Disease and % MUPAT (%Airway wall thickening and %Mucus plugging) predictors for school age clinical outcomes?
- School age outcomes: %Bronchiectasis, pulmonary exacerbations, quality of life, and FEV₁ %predicted
- Statistical analysis: T-tests, correlation analysis, cross-sectional analysis and linear mixed-effects model

Erasmus MC 2 april

MRI and low intensity regions: Spirometer control!

Erasmus MC 2 almo

AA method (Arrest CF 2-4 years): early thickening

Erasmus MC

zafing

Kuo et al, *Pediatr Pulmonol* 2017

Hyperpolarized helium-3 MRI to assess response to ivacaftor treatment in patients with CF

Altes et al, *JCF 2017*

SALD and Computerized learning

Erasmus MC

Courtesy of De Bruijne

Impact of lung volume on CF-CT scoring Children < 6 years: Lower number of visible airways

Erasmus MC 2 alms

Mott, Chest 2013

Standardization chest CT: image quality

- Q_{noise,res,dose} incorporates Image noise, resolution, and dose in one formula
- 'Higher Q_{noise,res,dose} is a better scanner'
- Radiation is the cost to obtain information
- Image noise; SSP, MTF are interrelated

Erasmus MC

Kuo et al, *ERJ 2016*

Comparison image quality: Scanners in EU

Erasmus MC

zafing

Kuo et al, *ERJ 2016*

Progression of PRAGMA over time

%Dis = Bronchiectasis + Airway Wall Thickening + Mucous impaction

Erasmus MC 2 april

AA-method (CF-CT ≥ 6 years): Results

AA-method (CF-CT \geq 6 years) : Ratio higher \geq 2nd segmental generation

AA method (Arrest CF 2-4 years): progressive widening

Erasmus MC

zafing

Double number of visible small airways in early and end stage CF lung disease relative to controls

Erasmus MC

Kuo et al, European Radiology 2017; Mott, Chest 2013 et al, Boon et al, AJRCCM 2016